Pitt and Boas inequalities for Fourier and Hankel transforms
نویسندگان
چکیده
منابع مشابه
Extremal Vector Valued Inequalities for Hankel Transforms
The disc multiplier may be seen as a vector valued operator when we consider its projections in terms of the spherical harmonics. In this form, it represents a vector valued Hankel transform. We know that, for radial functions, it is bounded on the spaces Lplq (r n−1 dr) when 2n n+1 < p, q < 2n n−1 . Here we prove that there exist weak-type estimates for this operator for the extremal exponents...
متن کاملSimilarity theorems for fractional Fourier transforms and fractional Hankel
The significance of the similarity theorem for the fractional Fourier transform is discussed, and the properties of self-similar functions considered. The concept of the fractional Hankel transform is developed for use in the analysis of diffraction and imaging in symmetrical optical systems. The particular case of Fresnel diffraction from a circular aperture is discussed and the effects of the...
متن کاملHankel matrix transforms and operators
Correspondence: homidan@kfupm. edu.sa Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, P. O. Box 119, Saudi Arabia Abstract Hankel operators and Hankel transforms are required in a number of applications. This article proves a number of theorems that efficiently and accurately approximates a function using Hankel transforms and Hankel sum....
متن کاملOscillation of Fourier transforms and Markov-Bernstein inequalities
Under certain conditions on an integrable function P having a real-valued Fourier transform P̂ and such that P(0)=0, we obtain an estimate which describes the oscillation of P̂ in [−C‖P ′‖∞/‖P ‖∞, C‖P ′‖∞/‖P ‖∞], whereC is an absolute constant, independent of P. Given > 0 and an integrable function with a non-negative Fourier transform, this estimate allows us to construct a finite linear combina...
متن کاملWeighted Norm Inequalities for Fourier Transforms of Radial Functions
Weighted L(R)→ L(R) Fourier inequalities are studied. We prove Pitt–Boas type results on integrability with general weights of the Fourier transform of a radial function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.06.045